
Whitepaper:
Mastering Application
Portfolio Management for
the Modern Enterprise

The Definitive Guide to Addressing
Application Performance, Rationalization,
Packaging, Patching and Resource
Optimization

01WHITE PAPER I INDEX I samanagroup.com

Index

02. Introduction

03. Application Rationalization

04. Application Profiling

06. Application Packaging

07. Application Patching

09. Application Performance Management

11. Application Resource Management

12. Governance and Escalation

14. The Future of Application Portfolio Management

15. Partnering for Success: Samana Group

16. Executive Summary and Conclusion

02

Application Profiling

Application Rationalization

Testing

Application Packaging

Application
Patching

Resource &
Performance
Management

Introduction
IT leaders and managers overseeing large application portfolios face a multifaceted
challenge: ensuring performance, controlling sprawl, streamlining delivery, maintaining
security and optimizing resources. With diverse systems, ranging from virtual desktops
to cloud-native apps and legacy platforms, the stakes are high. Poor management
leads to inefficiencies, security risks and frustrated users.

This following whitepaper from Samana Group delivers a concise list of tips and
best practices for effectively managing your application ecosystem, including best
practices for application rationalization, profiling, testing, packaging, patching and
resource/performance management, equipping you and your team with actionable
strategies to address common pain points and challenges.

This white paper is intended to be as comprehensive and detailed as possible to
help those who are looking to enhance their current application management practices
and teams. If you are a practitioner, we encourage you to spend a moment reviewing
the contents below, however if you are looking for an abbreviated/executive summary
of the main themes covered in this guide you can find one here towards the end of
this white paper.

WHITE PAPER I INTRODUCTION I samanagroup.com

https://www.samanagroup.com

Application Rationalization
In a large enterprise, application portfolios often balloon over time, amassing dozens
or hundreds of tools; many redundant, underused, or obsolete. Application rationalization
is the disciplined process of assessing this sprawl to eliminate waste, align IT with
business goals, and optimize resources. Rationalization slashes unnecessary expenses,
freeing up critical IT budgets. Beyond cost, rationalization boosts agility and security.
A lean portfolio accelerates deployments, for example cutting the enterprise application
count from 200 to 150 might halve patching cycles from 14 days to 7, while reducing
attack surfaces: every unneeded app is a potential vulnerability, with 60% of breaches
exploiting outdated software.

Why Rationalization Should Be the First Step

Rationalization must kick off the application lifecycle because it sets the foundation
for every downstream process—profiling, packaging, patching, performance, and resource
management. Starting here answers the critical question: “Which apps truly matter?”
Before profiling dependencies or packaging for deployment, you need to know
what’s worth the effort.

Skipping rationalization first risks building on a shaky base. You might optimize
performance for 50 apps, only to later cut 15, wasting 100+ hours of IT time.
Rationalization acts as the filter, trimming the application portfolio to its essentials
before deeper investment, ensuring every subsequent step is purposeful. Data backs
this: organizations rationalizing first see 25-35% lower IT costs and 20% faster
lifecycle execution than those who don’t.

Assessing and Pruning Your Portfolio

The following steps should be considered in your application rationalization exercises:

• Inventory: Catalog all applications, tagging them with usage data (e.g., active
users/month), business value (e.g., revenue impact), and maintenance cost.

• Analyze: Use a scoring model (e.g., 1-5 for criticality, complexity, and cost)
to identify candidates for retirement (score < 3) or consolidation
(duplicate functionality).

• Act: Decommission low-value apps (e.g., < 10 users) and merge overlapping
tools (e.g., two CRM systems) within 90 days, validating with stakeholders.

Rationalization Best Practices:

• Map Business Value First: Before scoring, align with business units to rank
apps by ROI, for example, “CRM drives 15% of sales, scoring 5/5; unused reporting
tool scores 1/5.” Use this to guide cuts, ensuring rationalization also prioritizes
impact over gut feel.

• Start with a pilot: Rationalize 10% of your portfolio to prove ROI before scaling.
Aim for a 20-30% reduction in app count annually.

03WHITE PAPER I APPLICATION RATIONALIZATION I samanagroup.com

WHITE PAPER I APPLICATION PROFILING I samanagroup.com

Application Profiling
Understanding Requirements, Dependencies and Usage

Profiling is the critical step towards driving standardization and efficiency in your
application management program, providing a detailed blueprint of each application’s
requirements, dependencies, interconnections and behavior. Here are some
considerations:

• Requirements: Capture functional needs (e.g., “HR app requires real-time
 payroll updates”) and non-functional specs (e.g., “< 200ms latency, 99.9% uptime”).
 Gather these through stakeholder interviews and SLA reviews.
• Dependencies: Identify all components (e.g., “App A needs SQL Server 2019,
 .NET Framework 4.8, and API B v2.3.”) Use tools, network traces, or runtime
 analysis to map libraries, services, and external calls comprehensively.
• Usage Patterns: Analyze logs for peak loads, average usage and idle periods.
 Tie these to business impact (e.g., “Accounting app critical on month-end”).

Informing Packaging with Profile Data

In addition to the above benefits, profiling directly shapes application packaging
approaches by pinpointing dependencies and components:

• Dependency Inclusion: Ensure packaging includes all required elements
identified in the profile (e.g., embedding a specific DLL or runtime library
(like Java 11)) to avoid runtime failures.

• Conflict Avoidance: Highlight potential conflicts (e.g., “App X and Y both
need different OpenSSL versions”), allowing packaging tools to isolate
or bundle appropriately.

• Lightweight Packages: Exclude unnecessary dependencies flagged as
unused in the profile (e.g., legacy drivers), reducing package size by 10-20%
and speeding deployment.

Enabling Virtual Application and Virtual Desktop Deployments

For many businesses a sound profiling strategy will provide data that drives successful
virtualization, whether as standalone virtual apps or part of a virtual desktop/workspace:

• Virtual Apps: Profiled dependencies ensure apps run independently
(e.g., “CRM packaged with SQLite runs on Citrix Virtual Apps without server-side
installs.”) Test profiles under virtual isolation to confirm no cross-app interference.

• Virtual Desktops/Workspaces: Use usage patterns to optimize VDI resource
allocation. Profiles also flag apps needing GPU support for virtual delivery
(e.g., CAD tools).

• Compatibility: Validate OS and dependency alignment with virtualization platforms
(e.g., Omnissa Horizon, Windows 365).

04

05

Building a Profile Repository is key to taking full advantage
of the profiling efforts as this will help to facilitate ongoing
management as well as the ability for knowledge transfer
as teams and business units change:

• Store profiles in a centralized database (e.g., Excel, ServiceNow) with fields like
version, OS compatibility, dependency list, usage metrics, and virtualization notes.

• Refresh profiles bi-annually or after major updates to keep packaging and
virtualization strategies current.

Application Profiling Best Practice: Begin profiling your top 10 apps by user
count or criticality—accurate profiles here streamline packaging and virtualization,
setting the stage for portfolio-wide success.

WHITE PAPER I APPLICATION PROFILING I samanagroup.com

Analyze logs
for peak loads,
average usage
and idle periods.
Tie these to
business impact.

Application Packaging
Application packaging drives deployment efficiency, ensuring applications install reliably, run
smoothly, and scale effortlessly—whether delivered to physical endpoints, virtual desktops, or
cloud environments. In a large portfolio, where dozens or hundreds of apps must coexist, proper
packaging eliminates conflicts, reduces setup time, and enables automation, cutting deployment
cycles from hours to minutes. For example, a well-packaged CRM app can roll out to 1,000 users in
under an hour, versus days of manual tweaks. It’s the difference between a streamlined IT
operation and a chaotic one, directly impacting user productivity and operational costs.

The fallout from neglecting packaging is brutal. Inconsistent or untested packages can lead to
deployment failures, and conflicts between applications (e.g., two tools overwriting the same DLL).
In virtualized setups like Citrix or VMware Horizon, poorly packaged applications can bloat images
or fail isolation, slowing VDI performance by 20-40% and frustrating users. Without a disciplined
approach, packaging becomes a bottleneck, inflating IT workloads and risking rollbacks that
erode trust in new releases.

Streamlining Deployment

Efficient packaging ensures consistency and enables streamlined, automated deployments
across diverse environments—endpoints, virtual apps or workspaces:

• Standardize: Use tools that can create portable, conflict-free packages. Define a
universal template that covers OS compatibility (Windows 10/11, Server 2022),
dependency list (e.g., Java 17, Python 3.9), and install scripts (silent, no user prompts)
based on profiling data. This ensures packages are self-contained.

• Unstandardized packaging risks chaos: one-off builds waste 10-15 hours per app,
and incompatibility (e.g., Windows 11 rejecting a Windows 7 package) halts rollouts.

• Test: Validate packages in a sandbox mirroring production for at least 48 hours under
load (e.g., 200 simulated users via Login VSI). Test key scenarios: install/uninstall, app
launch and peak usage (e.g., 100 transactions). For virtualized deployments, confirm
isolation (e.g., “App A doesn’t overwrite App B’s registry keys”). Skipping this step risks
deploying flawed packages: a 5% failure rate across 500 endpoints can lead to over 25
urgent fixes, eating 50+ hours of IT time.

• Version: Maintain a package library with strict version control stored in a repository
like SCCM or Artifactory. Tag packages with metadata (e.g., “Tested on Horizon 8.5”) and
keep prior versions for rollbacks. Without versioning, you open your team up to having to
rebuild from scratch post-failure, delaying recovery by days and doubling costs.

Poor packaging turns deployment into a gamble: An untested package might work on 80%
of systems but fail on 20%, costing significant costs in lost productivity—or worse, force a full
rollback, delaying a critical release by a week. Standardization, testing and versioning make
success predictable.

Application Packaging Best Practice - Automate Package Validation with Login VSI: Package
high-priority apps first (e.g., top 5 by user count) to perfect your process, then use Login VSI to
automate testing. Analyze results for errors, latency (< 200ms), and resource use (< 4GB RAM),
targeting a 50% reduction in deployment errors. This practice cuts testing time and ensures
virtual or endpoint delivery is rock-solid.

06WHITE PAPER I APPLICATION PACKAGING I samanagroup.com

Application Patching

Why Patching is Non-Negotiable

In today’s threat landscape, patching is a frontline defense against mitigating security breaches
and ensuring application stability. With cyberattacks exploiting unpatched vulnerabilities within
days—or even hours—of disclosure, a single oversight can expose sensitive data, disrupt operations
or incur regulatory penalties. For instance, the 2017 Equifax breach, linked to an unpatched
Apache Struts flaw, compromised 147 million records and cost over $1 billion, a stark reminder of
patching’s stakes. Beyond security, patches fix bugs that degrade performance, such as memory
leaks or compatibility issues, ensuring applications remain reliable across a diverse portfolio.

Failing to prioritize patching has dire implications. An unpatched critical app, like a public-facing
portal, could become an entry point for ransomware, locking down systems and halting business
for days. Stability suffers too: an outdated app might crash under load post-OS update, forcing
emergency downtime and eroding user trust. For regulated sectors (e.g., healthcare, finance),
delayed patching risks non-compliance (e.g., HIPAA fines up to $1.5 million annually), while IT
teams scramble to remediate, diverting resources from innovation. Without a proactive patching
strategy, vulnerabilities persist, costs balloon and business stability weakens.

Ensuring Proactive Security and Stability

A well-structured patch management process mitigates these risks without disrupting
operations. Here’s how to execute it effectively:

• Prioritize: Rank patches using severity metrics like CVSS scores (e.g., > 7 for high-risk)
and app criticality from your profile data. Start with apps exposed to the internet, like web
portals or customer APIs, where exploits spread fastest. Cross-reference with business
impact to align with operational needs. Skipping prioritization risks patching low-impact
apps while critical ones languish, amplifying exposure.

• Automate: Leverage tools to push patches during off-hours (e.g., 2-4 AM local time),
minimizing user impact. Pre-test on a 10% sample of systems mirroring production, e.g.,
same OS, dependencies, and load, to catch issues like a patch breaking a key dependency
(e.g., .NET update crashing a legacy app). Automation cuts manual effort by 60-70%, but
without testing, you risk deploying a flawed update portfolio-wide, triggering outages.

• Verify: Post-patch, run synthetic tests with tools like Login VSI (e.g., 100 logins or 50
transactions) to confirm performance parity. Aim for < 5% latency increase (e.g., 200ms
to 210ms) and no functional regressions (e.g., login failures). Check resource usage too
(e.g., CPU spikes from 30% to 50% signal a problem). Unverified patches can silently
degrade user experience, turning a security fix into a performance headache, so this
step is non-negotiable.

07WHITE PAPER I APPLICATION PATCHING & SECURITY I samanagroup.com

WHITE PAPER I APPLICATION PATCHING & SECURITY I samanagroup.com 08

Goal

Achieve a 95% patch compliance rate within 7 days of release for critical updates. This
benchmark balances speed with stability, ensuring vulnerabilities close fast while maintaining
service quality. Falling short, like a 60% rate after 14 days, leaves gaps attackers exploit,
with 90% of breaches tied to patches available for over a month.

Application Patching Best Practice - Stage Patches with a Canary Approach: Barring any
patches addressing critical and time sensitive zero-day exploits, roll out patches to a small,
non-critical subset (e.g., 5% of test VMs) for 48 hours before wider deployment. Monitor for
stability and performance shifts to catch issues early. This reduces portfolio-wide risk,
keeping disruptions minimal.

Rank patches
using severity
metrics like CVSS
scores and app
criticality from
your profile data.

Application Performance Management

Why Performance Management Matters

In a large application portfolio, performance is a key driver of user satisfaction, operational
efficiency, and business success. Applications, whether powering customer-facing portals, internal
workflows or virtual desktops must deliver fast, reliable experiences to meet rising expectations.
Poor performance, such as slow load times or frequent crashes, directly erodes productivity: a
1-second delay in page response can reduce user satisfaction by 16% and cost e-commerce firms
millions in lost revenue annually. For IT teams, degraded performance strains infrastructure, spikes
support tickets and delays critical releases, creating a ripple effect of inefficiency.

The stakes escalate when performance issues go unaddressed. Unchecked bottlenecks, like
an app consuming excessive CPU during peak hours, can cascade into system-wide outages,
jeopardizing SLAs and risking reputational damage. In regulated industries (e.g., finance, healthcare),
sluggish or unstable apps may even breach compliance standards, inviting fines or audits. Without
proactive performance management, IT leaders face a vicious cycle of firefighting, rising costs
and frustrated stakeholders, turning a manageable challenge into a strategic liability.

Structured Testing and Benchmarking

Robust testing and benchmarking are the backbone of performance management, ensuring
applications meet defined standards under real-world conditions.

• Script Lifecycle: Build reusable, modular test scripts using tools like Login VSI. Update
these scripts quarterly to reflect application changes (e.g., new features, UI updates) and
test under peak load scenarios, such as 500 concurrent users, to mimic high-traffic periods
like month-end closings. This ensures scripts remain relevant and stress tests reveal true
capacity limits, not outdated assumptions.

• Alignment: Synchronize testing with development sprints to catch issues early.
Use profile-derived benchmarks as pass/fail gates (e.g., response time < 200ms,
throughput > 50 transactions/second) to align with user expectations and SLAs.
This integration prevents performance regressions from slipping into production,
saving costly post-deployment fixes.

Neglecting structured testing invites blind spots: For example, an untested update might
spike latency from 150ms to 600ms, unnoticed until users complain, triggering emergency
rollbacks and downtime. Consistent benchmarking, tied to business cycles, keeps
performance predictable and reliable.

Reporting and Monitoring

Visibility is critical to sustaining performance across a portfolio.

• Reports: Track key performance indicators (KPIs) like error rate (< 1%), average
response time (< 300ms), and availability (99.9%) in a centralized dashboard. Refresh
daily for operational teams to spot immediate issues, e.g., a 2% error spike in a billing
app—and monthly for leadership to assess trends, such as a 10% latency improvement
after optimization. Include per-application breakdowns to pinpoint laggards

09WHITE PAPER I RESOURCE & PERFORMANCE MANAGEMENT I samanagroup.com

Performance is a
key driver of user
satisfaction,
operational
efficiency, and
business success

WHITE PAPER I RESOURCE & PERFORMANCE MANAGEMENT I samanagroup.com 10

and portfolio-wide aggregates to gauge overall health. Without this,
IT risks flying blind, unable to justify resource requests or prove ROI.

• Monitoring: Deploy lightweight agents like Samana Group’s ‘SAMM’ (e.g., on VMs,
containers) to log CPU, memory, disk I/O, and network usage in real time. Set tiered
alerts for anomalies. Correlate app metrics with infrastructure (e.g., “CRM latency
jumped when DB server hit 95% I/O”) to diagnose root causes fast. Unmonitored
systems invite silent failures, like a memory leak doubling resource use over
weeks, draining budgets and degrading experiences unnoticed.

Poor reporting and monitoring compound risks. A lack of data delays problem identification—e.g.,
a regional office suffering 500ms latency for days before it’s flagged—while reactive fixes inflate
costs. Proactive visibility turns performance management from a guessing game into a strategic asset.

Performance Management Best Practice - Simulate Failure Early: Inject chaos into your testing
(e.g., disable a dependency like a database or throttle bandwidth to 50% during a Login VSI run)
to expose weak points before they hit production. This builds resilience and cuts mean time to
recovery (MTTR) by 20-30%, ensuring your portfolio withstands real-world stress. Monitor for
the right metrics: Incorporate customizable monitoring tools like SAMM that allow the creation
of metrics not available in commercial and more rigid monitoring tools.

Application Resource Management

Why Resource Management is Critical
Efficient resource management is the unsung hero of a high-performing application portfolio.
Applications, whether running on-premises, in the cloud or as virtual desktops, rely on finite CPU,
memory, storage and network resources to deliver seamless experiences. Get it right, and you
balance performance with cost: a well-tuned app might serve 500 users on 8GB RAM instead of
16GB, saving thousands annually. Get it wrong, and waste creeps in; over-provisioned servers
burn budgets, while under-resourced apps choke during peak loads, frustrating users and stalling
operations. In a large portfolio, these inefficiencies multiply fast, turning a manageable expense
into a financial and operational burden. The consequences of neglecting resource management are
steep. Over-provisioning (e.g., assigning 4 vCPUs to an app needing 2) can inflate cloud costs by
30-50%, draining budgets without adding value. Under-provisioning is just as bad: an app hitting
100% CPU during a sales rush might crash, costing hours of downtime and lost revenue. Poor
visibility compounds the problem, leaving IT guessing about usage trends, unable to justify
investments or optimize effectively. In hybrid or virtualized environments, misallocated resources
also strain shared infrastructure, slowing unrelated apps and sparking inter-team blame. Without
deliberate management, resources become a silent killer of efficiency and agility.

Optimizing Infrastructure

Balance performance and cost with a structured approach to resource management:

• Profile: In addition to the application profiling actions mentioned earlier you can also
measure and profile resource usage per application with precision (e.g., “CRM consumes
4GB RAM and 2 vCPUs at 200 concurrent users”—using the right tools). Break it down by
workload: idle (e.g., 1GB RAM), average (e.g., 3GB), and peak (e.g., 6GB during quarterly
reporting). Cross-reference with profiling data to validate needs (e.g., “App X’s SQL
dependency doubles I/O at 300 users.”) Without this baseline, you risk over-or
under-sizing, misaligning resources with reality.

• Allocate: Set dynamic thresholds to adapt to demand (e.g., auto-scale VMs up if
CPU > 70% for 10 minutes or memory > 80% for 5 minutes, but cap at 120% of profile
baseline (e.g., 4.8GB RAM max) to prevent runaway provisioning). Use policies like “scale
down if CPU < 30% for 15 minutes” to reclaim unused capacity. Static allocations waste
money, for example a fixed 16GB VM for an app averaging 5GB, while unchecked scaling
can spike costs unexpectedly, so guardrails are key.

• Review: Conduct regular audits to right-size resources (e.g., cut 2 vCPUs from an
oversized app (from 6 to 4), saving $500/month in cloud fees, or add 1GB RAM to an
underperforming one flagged by monitoring (e.g., latency > 500ms)). Compare usage trends
to business cycles (e.g., “Tax app needs +50% capacity in April”, to plan ahead). Skipping
reviews locks in waste, like paying for 20% excess capacity year-round or misses
bottlenecks that degrade user experience.

Setting a goal can help to drive efforts here. For example, a goal to reduce resource waste by 15-20% within
6 months. This goal trims fat while ensuring performance holds steady. Falling short means overspending
persists or worse, under-resourcing triggers outages, with 70% of performance issues tied to resource mismatches.

Application Resource Management Best Practice - Implement Resource Tagging: Tag all apps and
infrastructure (e.g., “CRM_Prod,” “HR_Dev”) in your monitoring tools to track costs and usage by team,
app, or function. Review tags quarterly to spot overages (e.g., “Dev VMs cost 40% more than budgeted”)
and reallocate precisely, boosting savings by 10-15% without guesswork.

11WHITE PAPER I RESOURCE & PERFORMANCE MANAGEMENT I samanagroup.com

Governance and Escalation
In a sprawling application portfolio, governance provides the structure to align IT efforts with
business goals, while escalation ensures rapid resolution when issues arise. Without governance,
ad-hoc decisions proliferate (e.g., one team over-provisions resources while another skips patches)
leading to inconsistent performance, wasted budgets, and misaligned priorities. Strong governance
significantly simplifies and clarifies what can otherwise be a complex and chaotic process: it tracks
portfolio health, enforces standards, and keeps stakeholders informed, ensuring applications
deliver value reliably. Escalation, meanwhile, is the safety net; without it, a minor glitch
(e.g., a failed patch) can snowball into a portfolio-wide crisis, like a VDI outage halting work
for thousands. Together, they’re the glue holding a complex operation together.

Neglecting these disciplines invites disaster. Poor governance obscures visibility
(e.g., leadership learns of a 20% uptime drop months late, unable to act until damage is done).
Teams operate in silos, duplicating efforts or clashing over resources, driving costs up 15-25%
annually. Weak escalation compounds the pain: a stalled L1 alert might delay fixing a critical app
for 12 hours instead of 2, costing significant dollars in lost productivity. In regulated industries,
ungoverned portfolios risk compliance gaps (e.g., unpatched apps triggering audits) while slow
escalation amplifies downtime, eroding trust. Without these pillars, IT becomes reactive,
expensive and ineffective.

Portfolio Governance

Governance establishes control and accountability across the portfolio:

• Regular Reporting/Summaries: Deliver regular insights to keep teams and leadership
aligned. Weekly health scores per app (e.g., 92/100, based on uptime, latency, and patch
status) flag immediate risks (e.g., “HR app dropped to 85/100 due to CPU spikes.”). Monthly
trend reports highlight progress (e.g., “10% latency drop after optimizing ERP”—and pinpoint
laggards needing attention). Annual strategy reviews assess long-term goals (e.g., “Shift
50% of apps to cloud by 2026”) tying efforts to business outcomes. Without transparent
reporting and summaries, blind spots grow: a failing app might go unnoticed until
users revolt, tanking end user satisfaction.

• Oversight: Assign a dedicated governance lead to enforce standards across rationalization,
packaging, patching, performance management, and resource allocation. This role audits
compliance (e.g., “All critical apps patched within # days?”), resolves conflicts (e.g., “Dev
wants 16GB, ops says 8GB”), and drives consistency (e.g., ensuring packaging templates
match profiling data). Lack of oversight risks drift: one-off decisions pile up, like 10%
of apps missing security updates, exposing vulnerabilities.

Escalation Protocols

A structured escalation process keeps issues from spiraling out of control:

• Tiers: Define clear levels. L1 for basic alerts (e.g., CPU > 80%), L2 for app-specific issues
(e.g., patch failures breaking login), and L3 for portfolio-wide problems (e.g., VDI outage
affecting 5,000 users). Assign ownership (L1 to helpdesk, L2 to app admins, L3 to
architects) with escalation triggers like “L1 unresolved after 30 minutes.” Unclear tiers
delay action: a patch issue might bounce between teams for hours, doubling downtime.

WHITE PAPER I GOVERNANCE & ESCALATION I samanagroup.com 12

Define clear levels.
L1 for basic alerts,
L2 for app-specific
issues, and L3 for
portfolio-wide
problems.

WHITE PAPER I GOVERNANCE & ESCALATION I samanagroup.com

• Runbooks: Document fixes in detailed playbooks tied to profile data for accuracy.
Include SLAs (2 hours for L2 resolution, 4 hours for L3) to enforce speed. Test runbooks
quarterly to ensure relevance (e.g., “Does restarting X still fix Y post-update?”). Without
runbooks, fixes become guesswork: a 5-minute restart stretches to 60, amplifying
user impact.

Failing governance and escalation undermines the portfolio. A missing summary hides a cost
overrun, while a botched escalation turns a 1-hour fix into a day-long outage, both avoidable
with discipline.

Application Governance Best Practice - Gamify Compliance: Create a quarterly “Portfolio Health
Scorecard” ranking teams or apps (e.g., “Team A: 95/100, Team B: 88/100”) based on governance
metrics like patch rates or resource efficiency. Share it widely to spark friendly competition,
boosting adherence and fostering accountability without micromanaging.

13

WHITE PAPER I GOVERNANCE & ESCALATION I samanagroup.com 14

The Future of Application Portfolio Management

Why the Future Matters Now

The pace of technological change is relentless, and for IT leaders managing sprawling
application portfolios, staying ahead isn’t optional, it’s survival. Emerging technologies like
edge computing and quantum computing promise to reshape how applications are delivered and
perform, while AI and machine learning unlock smarter, predictive management. Adaptability
becomes an essential capability to pivot fast as these innovations mature, ensuring your portfolio
remains competitive, secure, and cost-effective. Proactively embracing the future positions IT
as a strategic driver (e.g., slashing latency by 50% with edge deployments or cutting resource
waste by 20% with AI insights) rather than a reactive cost center.

Ignoring these trends carries steep consequences. Lagging on edge adoption might leave
customer-facing apps struggling with 500ms latency while competitors hit 50ms, driving users
away and costing millions in lost revenue (e.g., a 1-second delay can cut e-commerce conversions).
Failing to leverage AI risks missing optimization opportunities, like over-allocating 10GB RAM to
an app needing 6GB, inflating cloud bills by 30%. Without adaptability, rigid frameworks stall
tool adoption (e.g., taking 6 months to integrate a new security protocol, leaving you vulnerable
to breaches like ransomware, which exploits a significant population of unpatched systems
within weeks. Inaction today locks in obsolescence tomorrow.

AI and Machine Learning

AI and ML will transform portfolio management from reactive to predictive:

• Predictive Patching: Intelligent use of AI will allow your business to forecast
patching needs (e.g., “Patch X likely fixes bug Y based on error logs”, prioritizing
CVSS 9.0 flaws hours faster than manual reviews). This cuts exposure windows
and thwarts exploits that can impact a large number of unpatched applications.

• Resource Optimization: Those businesses that leverage ML to analyze usage
patterns and auto-tune allocations, will be able to effectively shrink wasted resources
and operating expense. Without AI, you’re stuck guessing, over-provisioning or
risking outages from under-resourcing.

ASSETS-TEST-PACKAGE-DEPLOY MANAGE-SECURE-SUPPORT-OPTIMIZE

Stakeholder Governance, Oversight & Continuous Improvement

Application Lifecycle Methodology & Services

Application
Management

Strategy

Application
Packing

& Delivery

Application
Deployment
Automation

Performance
Monitoring &
Management

Application
Maintanence

& Support

Security &
Compliance

Management

Change
Management

Application
Decommissioning

Requirements
Analysis

Identify
application

needs, resource
requirement,
constraints,

dependencies,
and

compatibility
with existing
infrastructure.

Inventory
Management
(Application

Rationalization)

Create a
comprehensive

inventory of
applications,
identifying
outdated or

unused
applications.

Application
Testing

Enhance
performance,
scalability,
and user

experience
before

deployment.

Application
Layering

On-demand
application
packaging
without
conflicts.

Application
Packaging/

Isolation

Seamless
delivery of

complex
applications

without
installation
conflicts.

Virtualization
Support

Expertise in
deploying

applications
through

platforms like
VMware

Horizon or
Citrix Virtual
Applications.

Automated
Deployment

Tools

Automate
application
deployment

across multiple
cloud

environments.

Mass
Deployment
Capabilities

Centralized
management

tools for
streamlined
mass rollout.

Real-Time
Monitoring

Visibility into
application

performance for
proactive issue

resolution.

Resource
Optimization

Analyze
performance

metrics to
optimize
resource

allocation based
on business
demands.

Regular
Application
Updates and

Patching

Consistent
approach to

maintain
performance,
compliance &

security.

Endpoint Patch
Management

Consistent
approach to
managing
endpoint
operating
systems.

Technical
Support

Services &
Production

Insights

Ongoing
support for

troubleshooting
issues with
proactive

detection of
performance

problems.

Security
Protocols

implementation

Establish
security

measures to
protect

applications.

Day-Zero
Vulnerability
Updates and

Patching

Address
vulnerabilities

in near
real-time.

Data Protection
Strategies

Design backup
and recovery
strategies for

business
continuity.

Application
and Desktop

Image
Management

& Change
Management

Automated
checks for

images’
application
consistency.

Controlled
Change

Processes

Systematic
evaluation of

change requests
to minimize
disruptions.

End User
Training

Programs

Training
sessions to

enhance user
adoption of

new features.

Application
Retirement

Planning

Strategic
planning for

decommissioning
legacy

applications.

End-of-Life
Management

Manage the
retirement

process
ensuring

compliance
with data
retention
policies.

WHITE PAPER I PARTNERING FOR SUCCESS I samanagroup.com 15

Partnering for Success: Samana Group

Executing this playbook at scale is easier with the right partners. Samana Group and our
strategic ecosystem of platform partners, offers an end-to-end, comprehensive Application
Lifecycle Management service. With Samana Group you have the ability to integrate a turnkey
program that can handle all the elements outlined in this whitepaper while reducing execution
time, time to value, headache, risk, resources and overall operating expense.

• Rationalization: We assess and prune apps, targeting 20% cost savings.
• Packaging: Standardized, tested packages with Login VSI validation.
• Patching: Automated rollouts with post-patch performance checks.
• APM: Real-time monitoring and testing via Login VSI integration.
• Resources: Dynamic optimization with detailed reporting.

In addition to the above, Samana Group’s L2/L3 escalation support, program management
and governance ensure rapid resolution and transparency.

https://www.samanagroup.com

Executive Summary and Conclusion

Mastering a large application portfolio demands a unified approach to rationalization, profiling,
testing, packaging, patching, security, performance, and resource management. For your convenience
we have provided a very high level summary of the main themes of this whitepaper here for your review.

The best practices outlined in this whitepaper, when executed properly, will deliver measurable
outcomes: reduced sprawl, faster deployments, stronger security, higher uptime, and lower costs.
Partner with Samana Group and our strategic partnerships to turn this vision into reality.
Contact Samana Group to get started.

WHITE PAPER I EXECUTIVE SUMMARY AND CONCLUSION I samanagroup.com 16

APPLICATION
RATIONALIZATION

INVENTORY

REQUIREMENTS
DEPENDENCIES
USAGE PATTERNS

UNDERSTANDING REQUIEREMENT,
DEPENDENCIES AND USAGE

ANALYZE

ACT

BEST PRACTICE
PILOT

BEST PRACTICE

BEST PRACTICE

TOP 10 APPS BY
COUNT OR CRITICALITY

AUTOMATE
PACKAGE
VALIDATION
WITH
LOGINVSI

APPLICATION PROFILING

APPLICATION PACKAGING

APPLICATION RESOURCE
MANAGEMENT

GOVERNANCE & ESCALATION

FUTURE

APPLICATION PATCHING

APPLICATION PERFORMANCE
MANAGEMENT

APPLICATION
PORTAFOLIO

MANAGEMENT
FOR THE
MODERN

ENTERPRISE

INFORMING PACKAGING
WITH PROFILE DATA

ENABLING VIRTUAL APPLICATION
AND VIRTUAL DESKTOP DEPLOYMENTS

BUILDING A PROFILE RESPONSITORY

DEPENDENCY INCLUSION
CONFLICT AVOIDANCE
LIGHTWEIGHT PACKAGES

PORTFOLIO GOVERNANCE

ESCALATION PROTOCOLS

BEST PRACTICE

INFORMING PACKAGING
WITH PROFILE DATA

AI & MACHINE LEARNING

OPTIMIZING
INFRASTRUCTURE

ENSURING PROACTIVE
SECURITY AND STABILITY

GOAL

PRIORITIZE
AUTOMATE
VERIFY

STANDARDIZE
TEST
VERSION
BEST PRACTICE

IMPLEMENT
RESOURCE
TAGGING

95% PATCH AFTER 7 DAYS OF
RELEASE FOR CRITICAL UPDATES

STRUCTURED TESTING
AND BENCHMARKING

SCRIPT LIFECYCLE
ALIGNMENT

REPORTING AND MONITORING

STANDARDIZE
TEST
VERSION
BEST PRACTICE

SCRIPT LIFECYCLE
ALIGNMENT

REPORTS
MONITORING

PREDICTIVE PATCHING
RESOURCE OPTIMIZATION

OVERSIGHT
REGULAR REPORTING/SUMMARIES

RUNBOOKS

GAMIFY COMPLIANCE

TIERS

https://www.samanagroup.com

samanagroup.com
solutions@samanagroup.com

https://www.samanagroup.com

